Cylinders' theoretic force

Bore (mm)			12	16	20	25	32	40	50	63	80	100	125	150	200
Rod (mm)			6	6	8	10	12	16	20	20	25	25	35	40	50
Area (mm^{2})		A	113	201	314	491	804	1257	1963	3117	5027	7854	12271	17671	31416
		B	85	173	264	412	691	1056	1649	2803	4536	7363	11309	16415	29452
	0.1	A	11	20	31	49	80	126	196	312	502	785	1227	1767	3140
		B	8.5	17	26	41	69	106	165	280	453	736	1131	1642	2944
	0.2	A	23	40	63	98	161	251	393	623	1005	1571	2454	3534	6280
		B	17	35	53	82	138	211	330	561	907	1473	2262	3283	5888
	0.3	A	34	60	94	147	241	377	589	935	1508	2356	3681	5301	9420
		B	25	52	79	124	207	317	495	841	1361	2209	3393	4925	8832
	0.4	A	45	80	126	196	322	503	785	1247	2011	3142	4908	7068	12560
		B	34	69	106	165	276	422	660	1121	1814	2945	4524	6566	11776
	0.5	A	57	101	157	245	402	629	982	1559	2514	3927	6135	8836	15700
		B	42	87	132	206	346	528	825	1402	2268	3682	5655	8208	14720
	0.6	A	68	121	189	294	482	754	1178	1870	3016	4712	7363	10603	18840
		B	51	104	158	247	415	634	989	1682	2722	4418	6785	9849	17664
	0.7	A	79	141	220	343	563	880	1374	2182	3519	5498	8589	12370	21980
		B	59	121	185	289	484	739	1154	1962	3175	5154	7916	11491	20608
	0.8	A	90	161	251	393	643	1006	1570	2494	4022	6283	9816	14137	25120
		B	68	138	211	330	553	845	1319	2242	3629	5890	9047	13132	23552
	0.9	A	102	181	283	442	724	1131	1767	2805	4524	7069	11043	15904	28260
		B	76	155	238	371	622	950	1484	2523	4082	6627	10178	14774	26496
	1.0	A	113	201	314	491	804	1257	1963	3117	5027	7854	12271	17671	31400
		B	85	173	264	412	691	1056	1649	2803	4536	7363	11309	16415	29440

The method of calculation (Cylinders' force)

$\mathbf{F}=\mathbf{P} \times \mathbf{A}-\mathbf{f} \quad$| | F: | Cylinders' force |
| :--- | :--- | :--- |
| P: | Air pressure | (MPa) |
| A: | Piston area | $\left(\mathrm{mm}^{2}\right)$ |
| $\mathrm{f}:$ | Friction drag | (N) |

Pressure conversion chart

Pa	kPa	MPa	bar	mbar	$\mathrm{kgf} / \mathrm{cm}^{2}$	$\mathrm{cmH}_{2} \mathrm{O}$	mmH O	mmHg	$\mathrm{p.s.i}$
1	10^{-3}	10^{-6}	10^{-5}	10^{-2}	10.2×10^{-6}	10.2×10^{-3}	101.97×10^{-3}	7.5×10^{-3}	0.15×10^{-3}
10^{3}	1	10^{-3}	10^{-2}	10	10.2×10^{-3}	10.2	101.97	7.5	0.15
10^{6}	10^{3}	1	10	10^{4}	10.2	10.2×10^{3}	101.97×10^{3}	7.5×10^{3}	0.15×10^{3}
10^{5}	10^{2}	10^{-1}	1	10^{3}	1.02	1.02×10^{3}	10.2×10^{3}	750.06	14.5
10^{2}	10^{-1}	10^{-4}	10^{-3}	1	1.02×10^{-3}	1.02	10.2	0.75	14.5×10^{-3}
98066.5	98.07	98.07×10^{-3}	0.98	980.67	1	1000	10000	735.56	14.22
98.0665	98.07×10^{-3}	98.07×10^{-6}	0.98×10^{-3}	0.98	10^{-3}	1	10	0.74	14.22×10^{-3}
9.80665	9.807×10^{-3}	9.807×10^{-6}	98.07×10^{-6}	98.07×10^{-3}	10^{-4}	0.1	1	73.56×10^{-3}	1.42×10^{-3}
133.32	133.32×10^{-3}	133.32×10^{-6}	1.33×10^{-3}	1.33	1.36×10^{-3}	1.36	13.6	1	19.34×10^{-3}
6894.76	6.89	6.89×10^{-3}	68.95×10^{-3}	68.95	70.31×10^{-3}	70.31	703.07	51.71	1

Technical Data

Compressed air consumption

- The table is for a complete cycle with 100 mm stroke in one minute.

The method of calculation (Compressed air consumption)

$$
Q n=(A a+A b) \times L \times \frac{P+0.101}{0.101} \times n \times 10^{-6}
$$

Qu: Compressed air consumption (e/min)
Aa: Piston area of $A \quad\left(\mathrm{~mm}^{2}\right)$
$A b: \quad$ Piston area of $B \quad\left(\mathrm{~mm}^{2}\right)$
L : Stroke of cylinder (mm)
P: Air pressure
n: Cycle of operation

Flow rate conversion chart

$\mathrm{m}^{3} / \mathrm{s}$	I / s	$\mathrm{cm}^{3} / \mathrm{s}$	$\mathrm{m}^{3} / \mathrm{h}$	$\mathrm{m}^{3} / \mathrm{min}$	I / h	$\mathrm{I} / \mathrm{min}$	$\mathrm{ft}^{3} / \mathrm{min}$ (scam)	gallon min UK	gallon min USA
1	10^{3}	1	10^{6}	3.6×10^{6}	60	3.6×10^{6}	60×10^{3}	2.12×10^{3}	13.2×10^{3}
10^{-3}	1	10^{3}	3.6	60×10^{-3}	3.6×10^{3}	60	2.12	13.2	15.85
10^{-6}	10^{-3}	1	3.6×10^{-3}	60×10^{-6}	3.6	60×10^{-3}	2.12×10^{-3}	13.2×10^{-3}	15.85×10^{-3}
0.28×10^{-3}	0.28	0.28×10^{3}	1	16.67×10^{-3}	10^{3}	16.67	0.59	3.67	4.4
16.67×10^{-3}	16.67	16.67×10^{3}	60	1	60×10^{3}	10^{3}	35.31	219.97	264.17
0.28×10^{-6}	0.28×10^{-3}	0.28	10^{-3}	16.67×10^{-6}	1	16.67×10^{-3}	0.59×10^{-3}	3.67×10^{-3}	4.4×10^{-3}
16.67×10^{-6}	16.67×10^{-3}	16.67	60×10^{-3}	10^{-3}	60	1	35.31×10^{-3}	219.97×10^{-3}	264×10^{-3}
0.47×10^{-3}	0.47	0.47×10^{3}	1.699	28.32×10^{-3}	1.699×10^{3}	28.32	1		6.23
75.79×10^{-6}	75.77×10^{-3}	75.77	0.273	4.55×10^{-3}	0.273×10^{3}	4.55	0.16	1	1.48
63.09×10^{-6}	63.09×10^{-3}	63.09	0.227	3.79×10^{-3}	0.227×10^{3}	3.79	0.13	0.83	1

