MCJT series

Order example

MCJT - 12 - 40 - 25 M - G MODEL 1: Single Rod 2: Double Rod TUBE I.D. M: Magnet PORT THREAD Direct Port THREAD

PORT THREAD Blank: Rc thread G: G thread NPT: NPT thread

STYLE:

Co	de	Symbol	Description
1	1		Double acting / Male thread
1	2		Double acting / Female thread
1	3	₩ ₽	Single acting / Normally extended male thread
1	4		Single acting / Normally extended female thread
1	5		Single acting / Normally returned male thread
1	6		Single acting / Normally returned female thread
2	1		Double rod / Male thread
2	2	■ 	Double rod / Female thread
2	7		Double rod / Adjustable male thread
2	8		Double rod / Adjustable female thread

%~ Order example for special specification, refer to page J-03.

Features

- Ultra Compact, light weight and space saving cylinder.
- Wide range of bore sizes and strokes (12mm~100mm).
- Single and double acting available.

Specification

Мо	del					M	CJT					
Acting type		Do	Double acting / Single acting Double acting									
Tube I.D. (mi	m)	12	16	20	25	32	40	50	63	80	100	
Port size			M5:	×0.8		Rc	1/8	Rc	1/4	Rc	3/8	
Medium			Air									
Operating	Double acting	0.0	5~1	0.0	3~1			0.0	2~1			
pressure (MPa)	Single acting	0.2~1		0.1	5~1	0.1~1		l				
Proof pressu	re	1.5 MPa										
Ambient tem	perature	-5~+60 °C (No freezing)										
Available spe	ed range	50~500 mm/sec										
Sensor switc	h (※)				RC	B, R	CE, I	RCE	1			

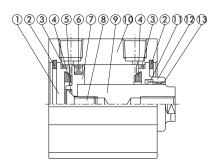
* RCB, RCE, RCE1 specification, please refer to page V-07, V-09.

Double acting - Table for standard stroke

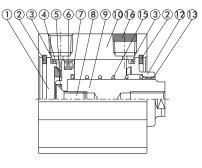
	Tube I.D.	Stroke (mm)	Max. stroke
	φ 12, φ 16	5, 10, 15, 20, 25, 30	300
Single rod	φ 20,25,32 φ 40,50,63	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	300
	φ 80~100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	125
	ϕ 12, ϕ 16	5, 10, 15, 20, 25, 30	300
Dual rod	φ 20,25,32 φ 40,50,63	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	300
	φ 80 ~ 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	125

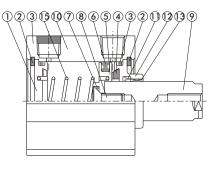
• Stroke out of specification is also available.

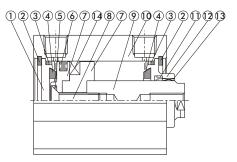
• Please consult us if stroke out of specification.


Single acting - Table for standard stroke

Tube I.D.	Stroke (mm)
φ 12, 16, 20, 25, 32, 40	5, 10
φ 50	10, 20


MCJT Inside structure & Parts list COMPACT CYLINDERS


Double acting


Single acting Normally returned

Single acting Normally extended

Double acting (with magnet)

Component parts Repair kits

(inclusion)

(inclusion)

•

•

Q'y

1

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

Seal kit

Material

Part name

Head cover

Snap ring

Cover ring

Cushion packing

Piston gasket

Piston packing

Piston

Screw

Body

Bush

Magnet

Spring

Silencer

Piston rod

Rod packing

Rod cover

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Tube I.D.

With magnet

Without magnet

SCM

12 16 20 25 32 40 50 63 80 100

Stainless steel

Stainless steel

Stainless steel

SUS

Aluminum alloy

NBR

NBR

NBR

Aluminum alloy

Aluminum alloy

NBR

Aluminum alloy

Plastic

SWP

Brass

NBR

Spring steel

SCM

SCM

Carbon steel

Bearing alloy

	Rod pa	acking	Piston p	acking	Cover ring	Piston gasket
Acting type	Double action normally extended	Normally returned	Double action	Single action	Double action single action	Double action single action
Qty.	1	0	1	1	2	1
12	KSYR-6	—	OPA-12	OPA-12	S-12	d4 \times w1
16	KSYR-8	—	OPA-16	OPA-16	S-14	d6×w1
20	KSYR-10	—	OPA-20	OPA-20	S-18	d6×w1
25	KSYR-12	—	OPA-25	OPA-25	S-22	d8×w1
32	KSYR-16	—	OPA-32	OPA-32	$d28 \times w2$	S-9
40	KSYR-16	—	OPA-40	OPA-40	S-36	S-9
50	KSYR-20	—	OPA-50	OPA-50	AS-31	S-16
63	KSYR-20	—	OPA-63	_	AS-35	S-16
80	ORA-25	—	OPA-80	—	AS-41	$d20 \times w1$
100	SDR-30	—	OPA-100	_	S-95	S-26

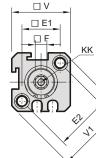
Order example Component parts

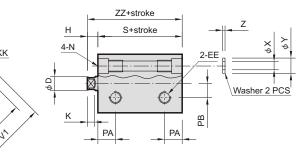
Tube I.D.	Component parts
φ12	CP-MCJT-12-12(M)
φ16	CP-MCJT-12-16(M)
φ20	CP-MCJT-12-20(M)
φ25	CP-MCJT-12-25(M)
φ32	CP-MCJT-12-32(M)
φ40	CP-MCJT-12-40(M)
ϕ 50	CP-MCJT-12-50(M)
φ63	CP-MCJT-12-63(M)
φ80	CP-MCJT-12-80(M)
φ100	CP-MCJT-12-100(M)

M: With magnet

Repair kits

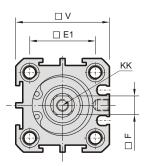
Tube I.D.	Repair kits
φ12	PS-MCJT-12-12
φ16	PS-MCJT-12-16
φ20	PS-MCJT-12-20
φ25	PS-MCJT-12-25
φ32	PS-MCJT-12-32
φ40	PS-MCJT-12-40
φ50	PS-MCJT-12-50
φ63	PS-MCJT-12-63
φ80	PS-MCJT-12-80
φ100	PS-MCJT-12-100


—

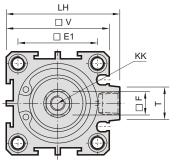


MCJT Female thread $\phi_{12} \sim \phi_{100}$ COMPACT CYLINDERS

φ 12, φ 16


¢ 20~ φ 100 Long stroke (Without counter bore)

 ϕ 12, ϕ 16 Long stroke


(Without counter bore)

 with magnet type: the stroke length must be over 100mm.

ϕ 20, ϕ 25

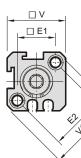
 $\phi 32 \sim \phi 100$

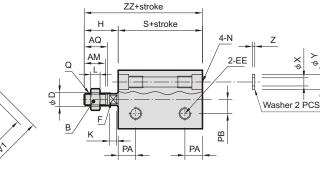
ZZ+stroke H S+stroke PA PA PA Z-EE K K 4-N Washer 4 PCS

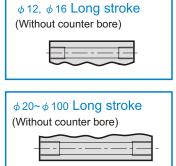
С	D	E1	E2	EE	F	G	н	κ	КК	LH	N	PA	ΡВ
-	6	16.3	23	M5×0.8	5	-	4.5	3	$M3 \times 0.5 \times 7$ depth	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	7.5	5.5
-	8	19.8	28	M5×0.8	6	-	4.5	3	$M4\!\times\!0.7\!\times\!7depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	8	6.5
1.5	10	24	-	M5×0.8	8	13	5.5	3	$M5\!\times\!0.8\!\times\!10depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 7.5$ depth	7.5	-
2	12	28	-	M5×0.8	10	17	6	3	$M6\!\times\!1\!\times\!10depth$	-	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth	8	-
3.3	16	34	-	Rc1/8(<u>%1</u>)	14	22	7	3	$M8\!\times\!1.25\!\times\!12depth$	48.5	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth	9	-
3.3	16	40	-	Rc1/8(<u>%1</u>)	14	28	7	3	$M8\!\times\!1.25\!\times\!12depth$	56.5	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth	10	-
4	20	48	-	Rc1/4(<u>※</u> 2)	17	38	9	3	$M10\!\times\!1.5\!\times\!15depth$	70	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	10.5	-
4	20	60	-	Rc1/4(<u>※</u> 2)	17	40	9	3	$M10\!\times\!1.5\!\times\!15depth$	83	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	11	-
5	25	74	-	Rc3/8(<u>%</u> 3)	22	45	11	4	M14 \times 2 \times 20depth	102	14 \times 10.5depth, 10.5, M12 \times 1.75 \times 12depth	13	-
3	30	90	-	Rc3/8(<u>%</u> 3)	27	45	9	4	$M18 \times 2.5 \times 20$ depth	122	18.5 \times 13depth, 12.3, M14 \times 2 \times 15depth	15	-
	- 1.5 2 3.3 3.3 4 4 5	- 6 - 8 1.5 10 2 12 3.3 16 3.4 20 4 20 5 5	Image: Constraint of the sector of	Image: Constraint of the symmetry of th	- 6 16.3 23 M5×0.8 - 8 19.8 28 M5×0.8 1.5 10 24 - M5×0.8 2 12 28 - M5×0.8 3.3 16 34 - Rc1/8(※1) 3.3 16 40 - Rc1/8(※1) 4 20 48 - Rc1/4(※2) 4 20 60 - Rc1/4(※2) 5 25 74 - Rc3/8(※3)	- 6 16.3 23 M5×0.8 5 - 8 19.8 28 M5×0.8 6 1.5 10 24 - M5×0.8 8 2 12 28 - M5×0.8 10 3.3 16 34 - Rc1/8(\times 1) 14 3.3 16 40 - Rc1/8(\times 1) 14 4 20 48 - Rc1/4(\times 2) 17 5 25 74 - Rc3/8(\times 3) 22	- 6 16.3 23 $M5 \times 0.8$ 5 - - 8 19.8 28 $M5 \times 0.8$ 6 - 1.5 10 24 - $M5 \times 0.8$ 8 13 2 12 28 - $M5 \times 0.8$ 10 17 3.3 16 34 - Rc1/8(\times 1) 14 22 3.3 16 40 - Rc1/8(\times 1) 14 28 4 20 48 - Rc1/4(\times 2) 17 38 4 20 60 - Rc3/8(\times 3) 22 45	- $ -$ <td>6 16.3 23 $M5 \times 0.8$ 5 4.5 3 8 19.8 28 $M5 \times 0.8$ 5 4.5 3 1.5 10 24 $M5 \times 0.8$ 6 4.5 3 1.5 10 24 $M5 \times 0.8$ 8 13 5.5 3 2 12 28 $M5 \times 0.8$ 10 17 6 3 3.3 16 34 $Rc1/8(\\$1)$ 14 22 7 3 3.3 16 40 $Rc1/8(\\$1)$ 14 28 7 3 4 20 48 $Rc1/4(\ast 2)$ 17 38 9 3 4 20 60 $Rc3/8(\gg 3)$ 22 45 11 4</td> <td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth 1.5 10 24 - M5×0.8 6 - 4.5 3 M4×0.7×7depth 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth 5 25 74 - Rc3/8(¥3) 22 45 11</td> <td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - - 8 19.8 28 M5×0.8 6 - 4.5 3 M3×0.5×7depth - 1.5 10 24 - M5×0.8 6 - 4.5 3 M4×0.7×7depth - 2 12 28 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 48.5 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 56.5 4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth 70 <t< td=""><td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 3.4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth</td><td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 7.5 - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 8 3.3 16 34 - Rc1/8(※1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 9 3.3 16 40 - Rc1/4(※2) 17 38 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 10 4 20 60 - Rc1/4(※2) 17 38</td></t<></td>	$ 6$ 16.3 23 $M5 \times 0.8$ 5 $ 4.5$ 3 $ 8$ 19.8 28 $M5 \times 0.8$ 5 $ 4.5$ 3 1.5 10 24 $ M5 \times 0.8$ 6 $ 4.5$ 3 1.5 10 24 $ M5 \times 0.8$ 8 13 5.5 3 2 12 28 $ M5 \times 0.8$ 10 17 6 3 3.3 16 34 $ Rc1/8(\$1)$ 14 22 7 3 3.3 16 40 $ Rc1/8(\$1)$ 14 28 7 3 4 20 48 $ Rc1/4(\ast 2)$ 17 38 9 3 4 20 60 $ Rc3/8(\gg 3)$ 22 45 11 4	- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth 1.5 10 24 - M5×0.8 6 - 4.5 3 M4×0.7×7depth 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth 5 25 74 - Rc3/8(¥3) 22 45 11	- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - - 8 19.8 28 M5×0.8 6 - 4.5 3 M3×0.5×7depth - 1.5 10 24 - M5×0.8 6 - 4.5 3 M4×0.7×7depth - 2 12 28 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 48.5 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 56.5 4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth 70 <t< td=""><td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 3.4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth</td><td>- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 7.5 - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 8 3.3 16 34 - Rc1/8(※1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 9 3.3 16 40 - Rc1/4(※2) 17 38 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 10 4 20 60 - Rc1/4(※2) 17 38</td></t<>	- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 3.3 16 34 - Rc1/8(¥1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 3.3 16 40 - Rc1/8(¥1) 14 28 7 3 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 3.4 20 48 - Rc1/4(¥2) 17 38 9 3 M10×1.5×15depth	- 6 16.3 23 M5×0.8 5 - 4.5 3 M3×0.5×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 7.5 - 8 19.8 28 M5×0.8 6 - 4.5 3 M4×0.7×7depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 1.5 10 24 - M5×0.8 8 13 5.5 3 M5×0.8×10depth - 6.5×4.5depth, 4.3, M5×0.8×6depth 8 2 12 28 - M5×0.8 10 17 6 3 M6×1×10depth - 8×6depth, 5.1, M6×1×9.5depth 8 3.3 16 34 - Rc1/8(※1) 14 22 7 3 M8×1.25×12depth 48.5 8×6depth, 5.1, M6×1×8depth 9 3.3 16 40 - Rc1/4(※2) 17 38 M8×1.25×12depth 56.5 10.5×8depth, 6.9, M8×1.25×10depth 10 4 20 60 - Rc1/4(※2) 17 38

%1: without magnet with stroke=5mm, EE=M5×0.8%2: without magnet with stroke=5mm, EE=Rc1/8

Code	т	v	V1	x	Y	z	without	magnet	mag	gnet
Tube I.D.		v	VI	^		2	S	ZZ	S	ZZ
12	-	25	32	3.2	6.3	1	20.5	25	25.5	30
16	-	29	38	3.2	6.3	1	20.5	25	30.5	35
20	-	34	-	3.2	6.3	1	19.5	25	29.5	35
25	-	40	-	4.2	7.8	1	21	27	31	37
32	14	44	-	4.2	7.8	1	24	31	34	41
40	14	52	-	6.2	10.3	1.6	26.5	33.5	36.5	43.5
50	19	62	-	6.2	10.8	1.6	28.6	37.6	38.6	47.6
63	20	75	-	6.2	10.8	1.6	32.5	41.5	42.5	51.5
80	27	94	-	8.2	13.8	1.6	41	52	51	62
100	26	114	-	10.2	17.3	2	45	54	55	64

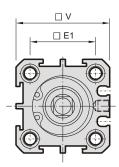

*3: without magnet with stroke=5mm, EE=Rc1/4

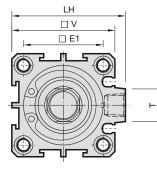


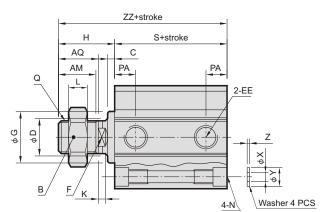


MCJT Male thread $\phi_{12} \sim \phi_{100}$ **COMPACT CYLINDERS**

φ 12, φ 16






with magnet type: the stroke length must be over 100mm.

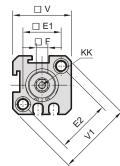
ϕ 20, ϕ 25

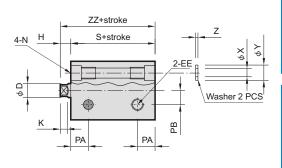
 ϕ 32~ ϕ 100

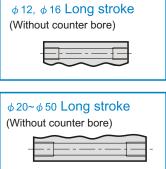


Code Tube I.D.	AM	AQ	в	С	D	E1	E2	EE	F	G	Н	κ	L	LH	N	PA	PB
12	9	10	8	-	6	16.3	23	M5×0.8	5	-	14.5	3	4	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	7.5	5.5
16	9	10	10	-	8	19.8	28	M5×0.8	6	-	14.5	3	5	-	$6.5\!\times\!4.5 \text{depth},4.3,\text{M5}\!\times\!0.8\!\times\!6 \text{depth}$	8	6.5
20	13	14	13	1.5	10	24	-	M5×0.8	8	13	19.5	3	5	-	$6.5\!\times\!4.5 \text{depth},4.3,\text{M5}\!\times\!0.8\!\times\!7.5 \text{depth}$	7.5	-
25	15	16	17	2	12	28	-	M5×0.8	10	17	22	3	6	-	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth	8	-
32	16	17	22	3.3	16	34	-	Rc1/8(<u></u> *1)	14	22	24	3	8	48.5	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth	9	-
40	25	27	22	3.3	16	40	-	Rc1/8(<u></u> *1)	14	28	34	3	8	56.5	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth	10	-
50	25	27	26	4	20	48	-	Rc1/4(<u>%</u> 2)	17	38	36	3	11	70	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	10.5	-
63	25	27	26	4	20	60	-	Rc1/4(<u>%</u> 2)	17	40	36	3	11	83	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	11	-
80	30	33	32	5	25	74	-	Rc3/8(<u>%</u> 3)	22	45	44	4	13	102	14 \times 10.5depth, 10.5, M12 \times 1.75 \times 12depth	13	-
100	30	33	35	3	30	90	-	Rc3/8(<u>%</u> 3)	27	45	42	4	14	122	18.5 \times 13depth, 12.3, M14 \times 2 \times 15depth	15	-
× 1 · with	out m	aaaaa	t with	strok	0-5m		=-M5	×0.8	×2.	witho	it mo	anot	with o	troko-F	mm EE=Rc1/A		

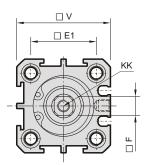
%1: without magnet with stroke=5mm, EE=M5×0.8%2: without magnet with stroke=5mm, EE=Rc1/8

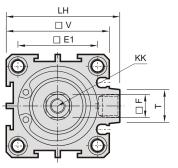

3: without magnet with stroke=5mm, EE=Rc1/4

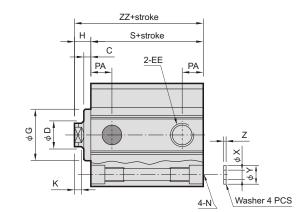

Code	Q	т	v	V1	x	Y	z	without	magnet	magnet	
Tube I.D.	u u		v	VI	^	T	2	S	ZZ	S	ZZ
12	M5×0.8	-	25	32	3.2	6.3	1	20.5	35	25.5	40
16	M6×1	-	29	38	3.2	6.3	1	20.5	35	30.5	45
20	M8×1	-	34	-	3.2	6.3	1	19.5	39	29.5	49
25	M10×1.25	-	40	-	4.2	7.8	1	21	43	31	53
32	M14×1.5	14	44	-	4.2	7.8	1	24	48	34	58
40	M14×1.5	14	52	-	6.2	10.3	1.6	26.5	60.5	36.5	70.5
50	M18×1.5	19	62	-	6.2	10.8	1.6	28.6	64.6	38.6	74.6
63	M18×1.5	20	75	-	6.2	10.8	1.6	32.5	68.5	42.5	78.5
80	M22×1.5	27	94	-	8.2	13.8	1.6	41	85	51	95
100	M26×1.5	26	114	-	10.2	17.3	2	45	87	55	97



φ 12, φ 16






% with magnet type: the stroke length must be over 100mm.

 ϕ 20, ϕ 25

 ϕ 32~ ϕ 50

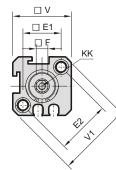
Code Tube I.D.	С	D	E1	E2	EE	F	G	Н	κ	КК	LH	N	PA	PB
12	-	6	16.3	23	M5×0.8	5	-	4.5	3	$M3\!\times\!0.5\!\times\!7depth$	-	6.5 \times 4.5depth, 4.3, M5 \times 0.8 \times 6depth	7.5	5.5
16	-	8	19.8	28	M5×0.8	6	-	4.5	3	$M4\!\times\!0.7\!\times\!7depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	8	6.5
20	1.5	10	24	-	M5×0.8	8	13	5.5	3	$M5\!\times\!0.8\!\times\!10depth$	-	6.5 \times 4.5 depth, 4.3, M5 \times 0.8 \times 7.5 depth	7.5	-
25	2	12	28	-	M5×0.8	10	17	6	3	M6 \times 1 \times 10depth	-	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth	8	-
32	3.3	16	34	-	Rc1/8(<u></u> *1)	14	22	7	3	$M8\!\times\!1.25\!\times\!12depth$	48.5	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth	9	-
40	3.3	16	40	-	Rc1/8(<u>*1</u>)	14	28	7	3	$M8\!\times\!1.25\!\times\!12depth$	56.5	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth	10	-
50	4	20	48	-	Rc1/4(<u>*</u> 2)	17	38	9	3	$M10\!\times\!1.5\!\times\!15depth$	70	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	10.5	-

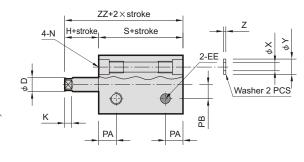
%1: without magnet with stroke=5mm, EE=M5×0.8%2: without magnet with stroke=5mm, EE=Rc1/8

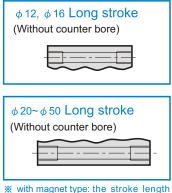
Code	т	v	V1	x	Y	z	without	magnet	magnet		
Tube I.D.	· ·	v	VI	^	•	-	S	ZZ	S	ZZ	
12	-	25	32	3.2	6.3	1	20.5	25	25.5	30	
16	-	29	38	3.2	6.3	1	20.5	25	30.5	35	
20	-	34	-	3.2	6.3	1	19.5	25	29.5	35	
25	-	40	-	4.2	7.8	1	21	27	31	37	
32	14	44	-	4.2	7.8	1	24	31	34	41	
40	14	52	-	6.2	10.3	1.6	26.5	33.5	36.5	43.5	
50	19	62	-	6.2	10.8	1.6	28.6	37.6	38.6	47.6	

Single acting -Table for standard stroke

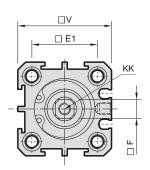
Tube I.D.	Stroke (mm)
φ 12, 16, 20, 25, 32, 40	5, 10
φ 50	10, 20

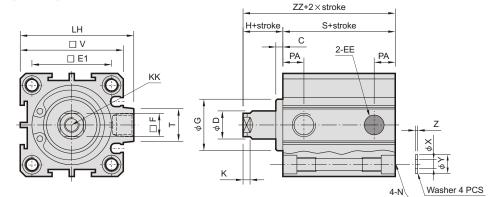

Single acting type


Please reconfirm the dimension with our sales department when the stroke over our standard.



φ 12, φ 16





with magnet type: the stroke length must be over 100mm.

ϕ 20, ϕ 25

 ϕ 32~ ϕ 50

Code ube I.D. F LH Ν PA PB С D E1 E2 EE G н Κ KK 4.5 M3×0.5×7depth 12 6 16.3 23 M5×0.8 5 -3 _ 6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth 7.5 5.5 16 -8 19.8 28 M5×0.8 6 -4.5 3 $M4 \times 0.7 \times 7 depth$ - 6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth 8 6.5 20 1.5 -M5×0.8 5.5 3 $M5 \times 0.8 \times 10$ depth 6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 7.5$ depth 7.5 10 24 8 13 _ _ - 8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth 25 2 12 28 M5 imes 0.810 17 6 3 $M6 \times 1 \times 10$ depth _ 8 _ 3.3 -Rc1/8(<u>*1</u>) 14 7 3 $M8 \times 1.25 \times 12$ depth 48.5 8×6 depth, 5.1, M $6 \times 1 \times 8$ depth 32 16 34 22 9 _ 40 3.3 $M8 \times 1.25 \times 12$ depth 10.5×8 depth, 6.9, M8 $\times 1.25 \times 10$ depth 16 40 Rc1/8(×1) 14 28 7 3 56.5 10 $M10\!\times\!1.5\!\times\!15depth$ 11×8.5depth, 6.9, M8×1.25×10depth 10.5 50 4 20 48 -Rc1/4(<u>*</u>2) 17 38 9 3 70 _

*1: without magnet with stroke=5mm, EE=M5×0.8
*2: without magnet with stroke=5mm, EE=Rc1/8

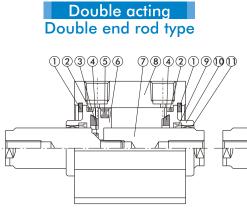
Code	т	v	V1	v	v	7	without	magnet	mag	gnet
Tube LD		v	VI	^		2	c	77	9	77

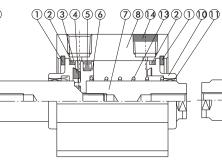
\	I T	V	V1	X		Z			5		
Tube I.D.		v			2	S	ZZ	S	ZZ		
12	-	25	32	3.2	6.3	1	20.5	25	25.5	30	
16	-	29	38	3.2	6.3	1	20.5	25	30.5	35	
20	-	34	-	3.2	6.3	1	19.5	25	29.5	35	
25	-	40	-	4.2	7.8	1	21	27	31	37	
32	14	44	-	4.2	7.8	1	24	31	34	41	
40	14	52	-	6.2	10.3	1.6	26.5	33.5	36.5	43.5	
50	19	62	-	6.2	10.8	1.6	28.6	37.6	38.6	47.6	

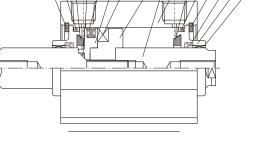
Single acting -Table for standard stroke

Tube I.D.	Stroke (mm)
φ 12, 16, 20, 25, 32, 40	5, 10
φ 50	10, 20

Single acting type

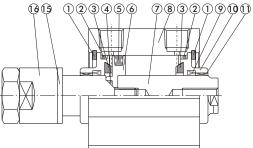

Please reconfirm the dimension with our sales department when the stroke over our standard.


6783219101


COMPACT CYLINDERS

Single acting Double end rod type

Double acting Double end rod type(with magnet)



Seal kit

	Rod pa	acking	Piston p	acking	Cover ring	Piston gasket
Acting type	Double action normally extended	Normally returned	Double action	Single action	Double action single action	Double action single action
QTY.	2	1	1	1	2	1
12	KSYR-6	KSYR-6	OPA-12	OPA-12	S-12	d4×w1
16	KSYR-8	KSYR-8	OPA-16	OPA-16	S-14	d6×w1
20	KSYR-10	KSYR-10	OPA-20	OPA-20	S-18	d6×w1
25	KSYR-12	KSYR-12	OPA-25	OPA-25	S-22	S-9
32	KSYR-16	KSYR-16	OPA-32	OPA-32	d28×w2	$d11 \times w1$
40	KSYR-16	KSYR-16	OPA-40	OPA-40	S-36	$d11 \times w1$
50	KSYR-20	KSYR-20	OPA-50	OPA-50	AS-31	S-14
63	KSYR-20	_	OPA-63	—	AS-35	S-14
80	ORA-25	_	OPA-80	—	AS-41	S-18
100	SDR-30	_	OPA-100	_	S-95	S-24

12345612

Order example

Component parts

Tube I.D.	Component parts
φ12	CP-MCJT-22-12(M)
φ16	CP-MCJT-22-16(M)
φ20	CP-MCJT-22-20(M)
φ25	CP-MCJT-22-25(M)
φ32	CP-MCJT-22-32(M)
φ40	CP-MCJT-22-40(M)
φ50	CP-MCJT-22-50(M)
φ63	CP-MCJT-22-63(M)
φ80	CP-MCJT-22-80(M)
φ100	CP-MCJT-22-100(M)

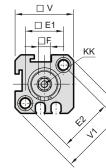
M: With magnet

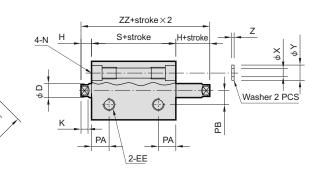
Repair kits

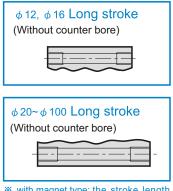
Tube I.D.	Repair kits
φ12	PS-MCJT-22-12
φ16	PS-MCJT-22-16
φ20	PS-MCJT-22-20
φ25	PS-MCJT-22-25
φ32	PS-MCJT-22-32
φ40	PS-MCJT-22-40
φ50	PS-MCJT-22-50
φ63	PS-MCJT-22-63
φ80	PS-MCJT-22-80
φ100	PS-MCJT-22-100

*w*indman

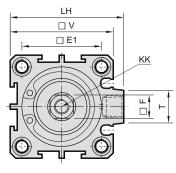
		· · ·		J	J i i i j	J
Acting type	Double action normally extended	Normally returned	Double action	Single action	Double action single action	Double action single action
QTY.	2	1	1	1	2	1
12	KSYR-6	KSYR-6	OPA-12	OPA-12	S-12	d4 \times w1
16	KSYR-8	KSYR-8	OPA-16	OPA-16	S-14	d6×w1
20	KSYR-10	KSYR-10	OPA-20	OPA-20	S-18	d6×w1
25	KSYR-12	KSYR-12	OPA-25	OPA-25	S-22	S-9
32	KSYR-16	KSYR-16	OPA-32	OPA-32	d28 \times w2	$d11 \times w1$
40	KSYR-16	KSYR-16	OPA-40	OPA-40	S-36	$d11 \times w1$
50	KSYR-20	KSYR-20	OPA-50	OPA-50	AS-31	S-14
63	KSYR-20	—	OPA-63	—	AS-35	S-14
80	ORA-25	_	OPA-80	_	AS-41	S-18
100	SDR-30	_	OPA-100	_	S-95	S-24

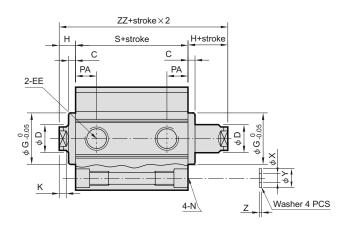

Material


No.	Tube I.D. Part name	12	16	20	25	32	40	50	63	80	100	Q'y	Component parts (inclusion)	Repair kits (inclusion)
1	Snap ring		Stain	less	steel			Spr	ing s	teel		2	•	
2	Cover ring					N	3R					2	•	
3	Cushion packing	-	-				NE	BR				2	•	•
4	Piston gasket					N	3R					1	•	
5	Piston packing					N	BR					1	•	•
6	Piston				Alu	iminu	um al	loy				1		
7	Piston rod	Sta	ainle	ss ste	eel	Carbon steel						2		
8	Body				Alu	iminum alloy						1		
9	Rod packing					NBR						2	•	•
10	Rod cover				Alu	iminum alloy						2		
11	Bush		-			Bearing alloy						2	•	
12	Magnet					Pla	stic					1		
13	Spring				SWF)						1		
14	Silencer			I	Brass	\$	-					1		
15	Cushion packing					PU						2		
16	Adjustable nut				С	arbo	n ste	el				1		



ϕ 12, ϕ 16



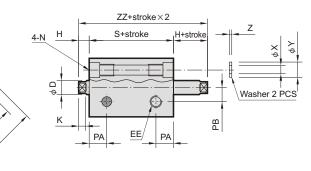

with magnet type: the stroke length must be over 100mm.

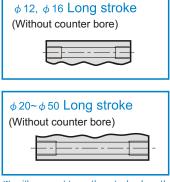
$\phi\,20,\phi\,25$

 ϕ 32~ ϕ 100

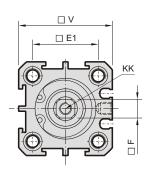
Code Tube I.D.	С	D	E1	E2	EE	F	G	н	κ	КК	LH	Ν	PA	PB
12	-	6	16.3	23	M5×0.8	5	-	4.5	3	$M3 \times 0.5 \times 7$ depth	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	7.5	5.5
16	-	8	19.8	28	M5×0.8	6	-	4.5	3	$M4 \times 0.7 \times 7 depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	8	6.5
20	1.5	10	24	-	M5×0.8	8	13	5.5	3	$M5\!\times\!0.8\!\times\!10depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 7.5$ depth	7.5	-
25	2	12	28	-	M5×0.8	10	17	6	3	M6 \times 1 \times 10depth	-	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth	8	-
32	3.3	16	34	-	Rc1/8(<u>*1</u>)	14	22	7	3	$M8\!\times\!1.25\!\times\!12depth$	48.5	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth	9	-
40	3.3	16	40	-	Rc1/8(<u></u> *1)	14	28	7	3	$M8\!\times\!1.25\!\times\!12depth$	56.5	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth	10	-
50	4	20	48	-	Rc1/4(<u>*</u> 2)	17	38	9	3	$M10\!\times\!1.5\!\times\!15depth$	70	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	10.5	-
63	4	20	60	-	Rc1/4(<u>*</u> 2)	17	40	9	3	$M10\!\times\!1.5\!\times\!15depth$	83	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	11	-
80	5	25	74	-	Rc3/8(<u>**</u> 3)	22	45	11	4	M14 \times 2 \times 20depth	102	14 \times 10.5depth, 10.5, M12 \times 1.75 \times 12depth	13	-
100	3	30	90	-	Rc3/8(<u>**</u> 3)	27	45	9	4	M18 \times 2.5 \times 20depth	122	18.5 \times 13depth, 12.3, M14 \times 2 \times 15depth	15	-

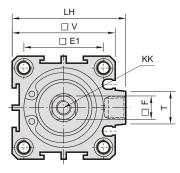
%1: without magnet with stroke=5mm, EE=M5×0.8%2: without magnet with stroke=5mm, EE=Rc1/8

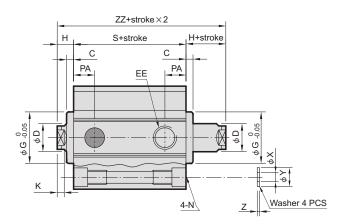

※3: without magnet with stroke=5mm, EE=Rc1/4


Code	т	v	V1	x	Y	z	without	magnet	magnet		
Tube I.D.	· •	v	VI	^	T	2	S	ZZ	S	ZZ	
12	-	25	32	3.2	6.3	1	20.5	29.5	25.5	34.5	
16	-	29	38	3.2	6.3	1	20.5	29.5	30.5	39.5	
20	-	34	-	3.2	6.3	1	19.5	30.5	29.5	40.5	
25	-	40	-	4.2	7.8	1	21	33	31	43	
32	14	44	-	4.2	7.8	1	24	38	34	48	
40	14	52	-	6.2	10.3	1.6	26.5	40.5	36.5	50.5	
50	19	62	-	6.2	10.8	1.6	28.6	46.6	38.6	56.6	
63	20	75	-	6.2	10.8	1.6	32.5	50.5	42.5	60.5	
80	27	94	-	8.2	13.8	1.6	41	63	51	73	
100	26	114	-	10.2	17.3	2	45	63	55	73	

ϕ 12, ϕ 16






* with magnet type: the stroke length must be over 100mm.

ϕ 20, ϕ 25

 ϕ 32~ ϕ 50

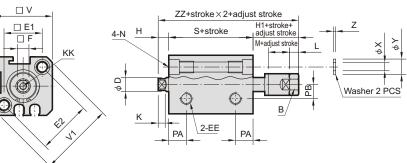
Code Tube I.D.	С	D	E1	E2	EE	F	G	Н	κ	КК	LH	N	PA	PB
12	-	6	16.3	23	M5×0.8	5	-	4.5	3	$M3\!\times\!0.5\!\times\!7depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	7.5	5.5
16	-	8	19.8	28	M5×0.8	6	-	4.5	3	$M4\!\times\!0.7\!\times\!7depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth	8	6.5
20	1.5	10	24	-	M5×0.8	8	13	5.5	3	$M5\!\times\!0.8\!\times\!10depth$	-	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 7.5$ depth	7.5	-
25	2	12	28	-	M5×0.8	10	17	6	3	M6 \times 1 \times 10depth	-	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth	8	-
32	3.3	16	34	-	Rc1/8(<u>*1</u>)	14	22	7	3	$M8\!\times\!1.25\!\times\!12depth$	48.5	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth	9	-
40	3.3	16	40	-	Rc1/8(<u>*1</u>)	14	28	7	3	$M8\!\times\!1.25\!\times\!12depth$	56.5	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth	10	-
50	4	20	48	-	Rc1/4(<u>*</u> 2)	17	38	9	3	$M10\!\times\!1.5\!\times\!15depth$	70	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth	10.5	-

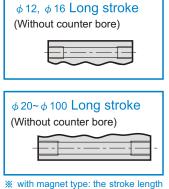
※1: without magnet with stroke=5mm, EE=M5 × 0.8 %2: without magnet with stroke=5mm, EE=Rc1/8

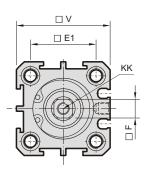
Code	, τ v v1 x y z		without	magnet	magnet					
Tube I.D.		v	V I	^	· ·	2	S	ZZ	S	ZZ
12	-	25	32	3.2	6.3	1	20.5	29.5	25.5	34.5
16	-	29	38	3.2	6.3	1	20.5	29.5	30.5	39.5
20	-	34	-	3.2	6.3	1	19.5	30.5	29.5	40.5
25	-	40	-	4.2	7.8	1	21	33	31	43
32	14	44	-	4.2	7.8	1	24	38	34	48
40	14	52	-	6.2	10.3	1.6	26.5	40.5	36.5	50.5
50	19	62	-	6.2	10.8	1.6	28.6	46.6	38.6	56.6

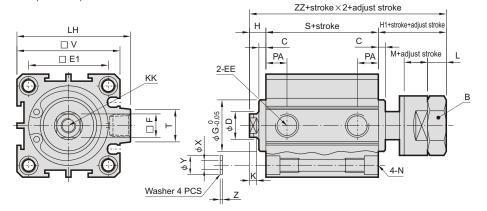
Single acting -**Table for standard stroke**

Tube I.D.	Stroke (mm)
φ 12, 16, 20, 25, 32, 40	5, 10
φ 50	10, 20


Single acting type


Please reconfirm the dimension with our sales department when the stroke over our standard.

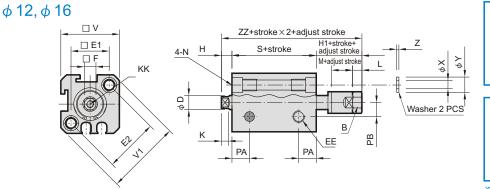

φ 12, φ 16

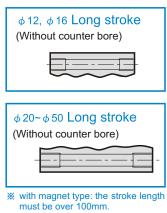


with magnet type: the stroke length must be over 100mm.

ϕ 20, ϕ 25

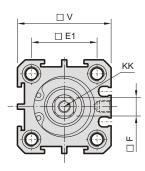
 $\phi 32 \sim \phi 100$

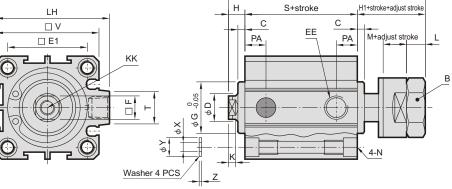

Code Tube I.D.	В	С	D	E1	E2	EE	F	G	Н	H1	κ	КК	L	LH	М	Ν
12	8	-	6	16.3	23	M5×0.8	5	-	4.5	19.5	3	$M3 \times 0.5 \times 7$ depth	4	-	13	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth
16	13	-	8	19.8	28	M5×0.8	6	-	4.5	22.5	3	$M4 \times 0.7 \times 7 depth$	5	-	15	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth
20	13	1.5	10	24	-	M5×0.8	8	13	5.5	25.5	3	$M5 \times 0.8 \times 10$ depth	5	-	15	$6.5\!\times\!4.5 \text{depth},4.3,\text{M5}\!\times\!0.8\!\times\!7.5 \text{depth}$
25	17	2	12	28	-	M5×0.8	10	17	6	26	3	M6 \times 1 \times 10depth	6	-	12	$8\!\times\!6depth,5.1,M6\!\times\!1\!\times\!9.5depth$
32	19	3.3	16	34	-	Rc1/8(<u></u> *1)	14	22	7	28	3	$M8\!\times\!1.25\!\times\!12depth$	7	48.5	12	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth
40	19	3.3	16	40	-	Rc1/8(<u></u> *1)	14	28	7	28.3	3	$M8\!\times\!1.25\!\times\!12depth$	7	56.5	12	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth
50	24	4	20	48	-	Rc1/4(<u>*</u> 2)	17	38	9	31	3	$M10\!\times\!1.5\!\times\!15depth$	8	70	15	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth
63	24	4	20	60	-	Rc1/4(<u>*</u> 2)	17	40	9	31	3	$M10\!\times\!1.5\!\times\!15depth$	8	83	15	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth
80	32	5	25	74	-	Rc3/8(<u>**</u> 3)	22	45	11	44	4	M14 \times 2 \times 20depth	13	102	20	14 \times 10.5depth, 10.5, M12 \times 1.75 \times 12depth
100	32	3	30	90	-	Rc3/8(<u>**</u> 3)	27	45	9	40	4	$M18\!\times\!2.5\!\times\!20depth$	13	122	20	18.5 \times 13depth, 12.3, M14 \times 2 \times 15depth
*1: with	without magnet with stroke=5mm, EE=M5×0.8															


%2: without magnet with stroke=5mm, EE=Rc1/8

Code	PA	РВ	т	v	x	Y	z	without	magnet	ma	gnet
Tube I.D		ГБ	•	v	^	T	2	S	ZZ	S	ZZ
12	7.5	5.5	-	25	3.2	6.3	1	20.5	44.5	25.5	49.5
16	8	6.5	-	29	3.2	6.3	1	20.5	47.5	30.5	57.5
20	7.5	-	-	34	3.2	6.3	1	19.5	50.5	29.5	60.5
25	8	-	-	40	4.2	7.8	1	21	53	31	63
32	9	-	14	44	4.2	7.8	1	24	59	34	69
40	10	-	14	52	6.2	10.3	1.6	26.5	61.8	36.5	71.8
50	10.5	-	19	62	6.2	10.8	1.6	28.6	58.6	38.6	78.6
63	11	-	20	75	6.2	10.8	1.6	32.5	72.5	42.5	82.5
80	13	-	27	94	8.2	13.8	1.6	41	96	51	106
100	15	-	26	114	10.2	17.3	2	45.5	94	55.5	104

MCJT Double end rod / Single action / Adjustable stroke $\phi_{12} \sim \phi_{50}$




ZZ+stroke × 2+adjust stroke

 ϕ 20, ϕ 25

Code Tube I.I	»).	в	С	D	E1	E2	EE	F	G	Н	H1	κ	КК	L	LH	Μ	N
12	2	8	-	6	16.3	23	M5×0.8	5	-	4.5	19.5	3	$M3 \times 0.5 \times 7$ depth	4	-	13	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth
16	5 1	13	-	8	19.8	28	M5×0.8	6	-	4.5	22.5	3	$M4\!\times\!0.7\!\times\!7depth$	5	-	15	6.5×4.5 depth, 4.3, M5 $\times 0.8 \times 6$ depth
20) 1	13	1.5	10	24	-	M5×0.8	8	13	5.5	25.5	3	$M5\!\times\!0.8\!\times\!10depth$	5	-	15	$6.5\!\times\!4.5 \text{depth},4.3,\text{M5}\!\times\!0.8\!\times\!7.5 \text{depth}$
25	5 1	17	2	12	28	-	M5×0.8	10	17	6	26	3	$M6 \times 1 \times 10$ depth	6	-	12	8×6 depth, 5.1, M $6 \times 1 \times 9.5$ depth
32	2 1	19	3.3	16	34	-	Rc1/8(<u></u> *1)	14	22	7	28	3	$M8\!\times\!1.25\!\times\!12depth$	7	48.5	12	8×6 depth, 5.1, M $6 \times 1 \times 8$ depth
40) 1	19	3.3	16	40	-	Rc1/8(<u></u> *1)	14	28	7	28.3	3	$M8\!\times\!1.25\!\times\!12depth$	7	56.5	12	10.5 \times 8depth, 6.9, M8 \times 1.25 \times 10depth
50) 2	24	4	20	48	-	Rc1/4(<u>*</u> 2)	17	38	9	31	3	$M10\!\times\!1.5\!\times\!15depth$	8	70	15	11 \times 8.5depth, 6.9, M8 \times 1.25 \times 10depth

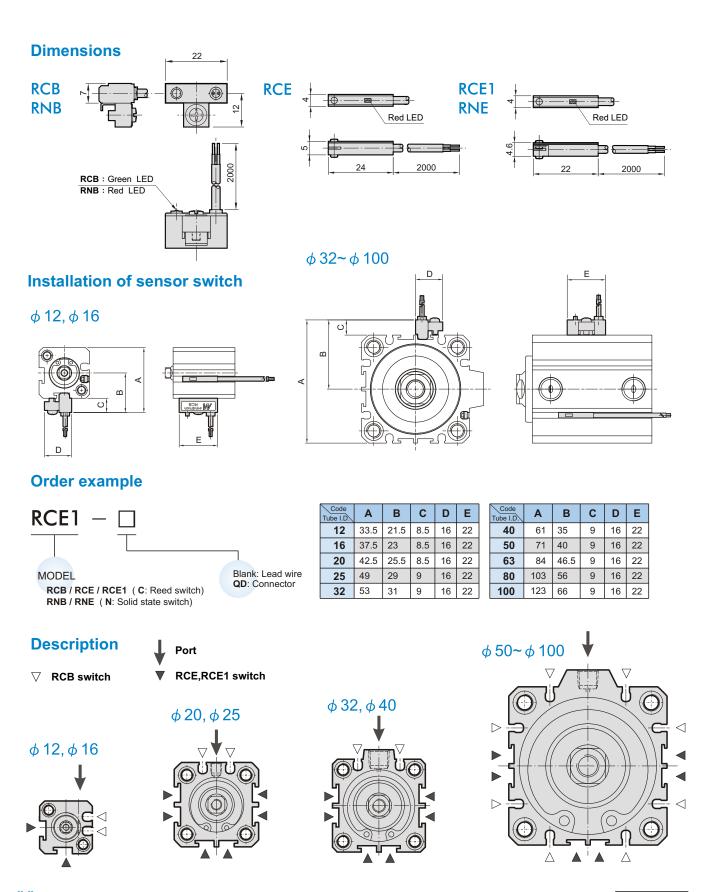
*1: without magnet with stroke=5mm, EE=M5×0.8
 *2: without magnet with stroke=5mm, EE=Rc1/8

*2: without	magnet wi	in stroke=5	MM, EE=R	C1/8

Code	PA	PB	т	v	х	Y	z	without	magnet	magnet		
Tube I.D.	FA	FD		v	^		2	S	ZZ	S	ZZ	
12	7.5	5.5	-	25	3.2	6.3	1	20.5	44.5	25.5	49.5	
16	8	6.5	-	29	3.2	6.3	1	20.5	47.5	30.5	57.5	
20	7.5	-	-	34	3.2	6.3	1	19.5	50.5	29.5	60.5	
25	8	-	-	40	4.2	7.8	1	21	53	31	63	
32	9	-	14	44	4.2	7.8	1	24	59	34	69	
40	10	-	14	52	6.2	10.3	1.6	26.5	61.8	36.5	71.8	
50	10.5	-	19	62	6.2	10.8	1.6	28.6	58.6	38.6	78.6	

Single acting -Table for standard stroke

Tube I.D.	Stroke (mm)
φ 12, 16, 20, 25, 32, 40	5, 10
φ 50	10, 20


Single acting type

Please reconfirm the dimension with our sales department when the stroke over our standard.

