For Hydraulics

280 Cupla

For hydraulic pressure up to 27.5~31.5MPa {281~321kgf/cm²}

Generic Cupla copes with high pressure lines in hydraulic equipment! Low pressure loss is ideal for hydraulic equipment.

- In accordance with international standard ISO 7241-1A.
- General purpose hydraulic Cuplas with the working pressure up to 27.5~31.5MPa {281~321kgf/cm²}.
- Structure keeps pressure loss extremely low, particularly ideal for hydraulic applications requiring high flow rates.
- Both socket and plug have built-in automatic shut-off valves to prevent fluid spill
 out when disconnected. This also makes handling each independent part easier.
- Special steel body material is adopted for its excellent strength and additional quenching treatment is done to withstand hydro pressure impacts.
- · Various end configurations.

Specifications					
Body material	Special steel (Zinc plating, clear passivate finish: silver)				
Size	1/4" •	3/8"	1/2" • 3/4" • 1"		
Working pressure MPa {kgf/cm²}	31.5	{321}	27.5 {281}		
Pressure resistance MPa {kgf/cm²}	47.3 {482}		41.3 {421}		
Seal material Working temperature range	Seal material	Mark	Working temperature range	Remarks	
	Nitrile rubber	NBR (SG)	-20°C~+80°C	Standard material	

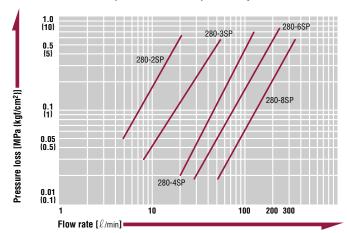
Max. Tightening Torque N·m {kgf·cm}					
Size	1/4"	3/8"	1/2"	3/4"	1"
Torque	28 {286}	40 {408}	80 {816}	100 {1020}	180 {1836}

Flow Direction Fluid may flow in either direction from plug or from socket side when coupled.

Interchangeability

Different sizes cannot be connected.

Min. Cross-Sectional Area					(mm²)
Model	280-2SP	280-3SP	280-4SP	280-6SP	280-8SP
Min. Cross-Sectional Area	11.4	42.8	79.1	146.5	235.6


Suitability for Vacuum		1.3Pa {1 x 10 ⁻² mmHg}
Socket only	Plug only	When connected
_	_	Operational

Admixture of Air on Connection (m					(mℓ)
Model	280-2SP	280-3SP	280-4SP	280-6SP	280-8SP
Volume of air	0.37	1.02	2.63	8.83	16.04

Flow Rate - Pressure Loss Characteristics

Test conditions] •Fluid : Hydra

 $\begin{array}{ll} \bullet \mbox{Fluid} \ \vdots \mbox{Hydraulic oil} & \bullet \mbox{Temperature} \ \vdots \ 30^{\circ}\mbox{C} \ \pm \ 5^{\circ}\mbox{C} \\ \bullet \mbox{Fluid viscosity} \ \vdots \ 32 \ x \ 10^{-6}\mbox{m}^2/\mbox{s} & \bullet \mbox{Density} \ \vdots \ 0.87 \ x \ 10^{3}\mbox{kg/m}^{3} \\ \end{array}$

